If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+2k-36=0
a = 3; b = 2; c = -36;
Δ = b2-4ac
Δ = 22-4·3·(-36)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{109}}{2*3}=\frac{-2-2\sqrt{109}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{109}}{2*3}=\frac{-2+2\sqrt{109}}{6} $
| k/5−18=9 | | 8x-8=18+2 | | 42=m/9+ 37 | | 43.25p=3762.75 | | 12=73−n | | 12+7b=33 | | 5s−39=51 | | 2x+8x=65 | | b/8− 1=2 | | b/8−1=2 | | 2x-4+2x-6+2x+8+x+17+2x+x-1+x+8+2x=1,260 | | b8−1=2 | | w/4+35=43 | | 45/c=9 | | 3(2x-2)+3x=2(7x+1)-5x-9 | | -19z−17=-20z | | -6b+9=-5b | | 5y-6=6.5 | | 5c-4c=11 | | 2y+3=5(y+3) | | 3=23−4m | | 5y-4=3y+15 | | 63/u=7 | | 30=5-8d | | 2x+45=163x= | | 1.2(x+3.4)=7.2 | | 21x2=7x | | 8x=23.4 | | 9+4x+4x=16 | | i=4/3+32/2 | | 7x-3x=2x+14 | | 7x-3x+2x=2x+14 |